3.359 \(\int \frac{(a+a \cos (c+d x))^{5/2}}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=180 \[ \frac{13 a^3 \sin (c+d x)}{12 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{a^2 \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{25 a^{5/2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{25 a^3 \sin (c+d x)}{8 d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(25*a^(5/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(8*
d) + (13*a^3*Sin[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(3/2)) + (a^2*Sqrt[a + a*Cos[c + d*x]]*
Sin[c + d*x])/(3*d*Sec[c + d*x]^(3/2)) + (25*a^3*Sin[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]
])

________________________________________________________________________________________

Rubi [A]  time = 0.360539, antiderivative size = 180, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4222, 2763, 2981, 2770, 2774, 216} \[ \frac{13 a^3 \sin (c+d x)}{12 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{a^2 \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{25 a^{5/2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{25 a^3 \sin (c+d x)}{8 d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(25*a^(5/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(8*
d) + (13*a^3*Sin[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(3/2)) + (a^2*Sqrt[a + a*Cos[c + d*x]]*
Sin[c + d*x])/(3*d*Sec[c + d*x]^(3/2)) + (25*a^3*Sin[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]
])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2763

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d*
(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(
m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m, 2*
n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{5/2}}{\sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{5/2} \, dx\\ &=\frac{a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} \left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \left (\frac{9 a^2}{2}+\frac{13}{2} a^2 \cos (c+d x)\right ) \, dx\\ &=\frac{13 a^3 \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{8} \left (25 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \, dx\\ &=\frac{13 a^3 \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{25 a^3 \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{1}{16} \left (25 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{13 a^3 \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{25 a^3 \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}-\frac{\left (25 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac{25 a^{5/2} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{8 d}+\frac{13 a^3 \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{25 a^3 \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 3.12753, size = 202, normalized size = 1.12 \[ \frac{\sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} (a (\cos (c+d x)+1))^{5/2} \left (-2 \sin ^4(c+d x) \csc ^2\left (\frac{1}{2} (c+d x)\right ) \, _3F_2\left (\frac{1}{2},\frac{3}{2},2;1,\frac{9}{2};2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )-8 \sin ^2(c+d x) (\cos (c+d x)+3) \, _2F_1\left (\frac{1}{2},\frac{3}{2};\frac{9}{2};2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )+7 (28 \cos (c+d x)+3 \cos (2 (c+d x))+89) \, _2F_1\left (-\frac{1}{2},\frac{1}{2};\frac{7}{2};2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )\right )}{420 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[Cos[c + d*x]]*(a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*Sqrt[Sec[c + d*x]]*(7*(89 + 28*Cos[c + d*x
] + 3*Cos[2*(c + d*x)])*Hypergeometric2F1[-1/2, 1/2, 7/2, 2*Sin[(c + d*x)/2]^2] - 8*(3 + Cos[c + d*x])*Hyperge
ometric2F1[1/2, 3/2, 9/2, 2*Sin[(c + d*x)/2]^2]*Sin[c + d*x]^2 - 2*Csc[(c + d*x)/2]^2*HypergeometricPFQ[{1/2,
3/2, 2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2]*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/(420*d)

________________________________________________________________________________________

Maple [A]  time = 0.47, size = 207, normalized size = 1.2 \begin{align*}{\frac{{a}^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}\cos \left ( dx+c \right ) }{24\,d \left ( \sin \left ( dx+c \right ) \right ) ^{4}} \left ( 8\,\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+34\,\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +75\,\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+75\,\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \right ) \sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(5/2)/sec(d*x+c)^(1/2),x)

[Out]

1/24/d*a^2*(-1+cos(d*x+c))^2*(8*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+34*sin(d*x+c)*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+75*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+75*arctan(sin(d*x+c)*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(
3/2)/(1/cos(d*x+c))^(1/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [B]  time = 2.43227, size = 2651, normalized size = 14.73 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/96*(4*(a^2*cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (a^2*cos(3*d*x + 3*c) - a^2)*sin(3/2*arctan2(sin(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*(cos(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*sqrt(a) + 30*(cos(2/3*arctan2(sin(3*d*x + 3*c), c
os(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1)^(1/4)*((a^2*sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*a^2*sin(1/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (a^2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c))) + 3*a^2*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4*a^2)*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(
a) + 75*(a^2*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*
c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(
sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1
))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*
c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(
sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1))) + 1) - a^2*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos
(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c),
 cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(
3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4
)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c),
 cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(
3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) - 1) - a^2*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(
3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)
*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)) + 1) + a^2*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*
sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*
d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c)
, cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))
- 1))*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]  time = 1.75807, size = 363, normalized size = 2.02 \begin{align*} -\frac{75 \,{\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{{\left (8 \, a^{2} \cos \left (d x + c\right )^{3} + 34 \, a^{2} \cos \left (d x + c\right )^{2} + 75 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/24*(75*(a^2*cos(d*x + c) + a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x
 + c))) - (8*a^2*cos(d*x + c)^3 + 34*a^2*cos(d*x + c)^2 + 75*a^2*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*
x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(5/2)/sqrt(sec(d*x + c)), x)